If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+40t+9
We move all terms to the left:
t-(-16t^2+40t+9)=0
We get rid of parentheses
16t^2-40t+t-9=0
We add all the numbers together, and all the variables
16t^2-39t-9=0
a = 16; b = -39; c = -9;
Δ = b2-4ac
Δ = -392-4·16·(-9)
Δ = 2097
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2097}=\sqrt{9*233}=\sqrt{9}*\sqrt{233}=3\sqrt{233}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-3\sqrt{233}}{2*16}=\frac{39-3\sqrt{233}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+3\sqrt{233}}{2*16}=\frac{39+3\sqrt{233}}{32} $
| -4k+10=3k-4 | | 4m-11=6m+5 | | 6a+11=3a+17 | | 3r-15=-3 | | (2r+3)(5r-1)=0 | | X(x+3)=x(x-1) | | 16q-7q=9 | | 10x+2-4x=3x-10 | | 20h-h+3h+h-22h=10 | | 5y-y-3y=5 | | 12j+3j-7j-4j-3j=8 | | -6s-16s+14s—-4s=20 | | -6s-16s+14s—4s=20 | | 12^2−15x+3=0 | | 10m+2m+m-4m=9 | | 7/2y=2/y+1/2 | | 12^2−15x+3=0. | | 2v+3v-2v=9 | | 12x2−15x+3=0. | | (7/2y)=(2/y)+(1/2) | | -3y+3=3(2y+6) | | 18c-2c+-6c—10c-2c=18 | | 3k+3k-2k=16 | | 18x-2x-10x+4x=20 | | 3z-z=14 | | 1.3x+x=910 | | -31+x=-89 | | s{^3}-5s{^2}=36s | | 8+16=x | | 0.25*10+0*x=0.1*(10+x) | | 3(w+2)+w=4(w+1)+10 | | 0.1x=1*0.1 |